Thursday, January 4, 2007

A strong structure in the raw

In an earlier post I talked about Harlan who ripped is Rectus Femorus as a result of tendon calcification following tendinitis. The obvious questions would be how to avoid tendinitis in the first place and then, if you get it, how to avoid calcification. In my research on the subject I ran across the following:

"The Wulzen Factor: Called the "antistiffness" factor, this compound is present in raw animal fat. Researcher Rosalind Wulzen discovered that this substance protects humans and animals from calcification of the joints-degenerative arthritis. It also protects against hardening of the arteries, cataracts and calcification of the pineal gland. 63 Calves fed pasteurized milk or skim milk develop joint stiffness and do not thrive. Their symptoms are reversed when raw butterfat is added to the diet. Pasteurization destroys the Wulzen factor-it is present only in raw butter, cream and whole milk."

I edited this data out of the article on saturated fat from Weston A. Price with the intent of doing further research on this particular topic and because I needed to shorten the saturated fat entry. Then, after slogging through a quagmire of irrelevant studies on PubMed, I ran across the following article (no thanks to PubMed but hats off to goo . . . . MSN Search) which rounds out the data on milk while making a few provocative points of its own:


REFINED FOODS, TEETH, BONE HARDNESS, & PREMATURE AGING

Meyer M. Silverman practiced dentistry in the city of Washington, DC for almost 50 years. He was well acquainted with the work of Weston A. Price, Sir Robert McCarrison and Francis Pottenger. As a GI in Europe, he observed the effects of starvation on people's teeth, and was appalled to find the same patterns of decay and bone loss among well-fed Americans. He staunchly opposed pasteurization and went to great lengths to obtain raw milk from a farmer in New York who sent it down to Washington on the greyhound bus. This article was reprinted from the Journal of the District of Columbia Dental Society, March 1971.

The dentist is in a position to determine whether a person is prematurely aging by the degree of teeth and bone hardness. This factor can help determine whether an individual is well-constructed; it can also be a method of diagnosing how well-built an individual may be. Teeth and bone hardness can be a helpful diagnostic aid in predictive medicine,1 and it can also be one of many factors used to determine the rate of aging.


HARD TEETH AND BONES LEADS TO STRONG BUILDS

I have noted while cutting teeth during operative procedures, and chiseling bone during surgical removal of teeth, that some patients had teeth and bone that seemed as hard as rock. Other patients had teeth and bone that were very soft or with variations between these two extremes. Why should there have been such differences in the character of these hard tissues of the body? The old adage that "we are what we eat" has been found to be the determining factor in the hardness of these oral tissues, and in the aging of the individual.

Throughout the years, when extremes between the hard and soft tissue of patients were noted, the patients were asked about the types of food they had eaten from infancy up to their present ages, as well as questions concerning their general health and history. Generally, those with hard teeth and bones were strongly built and in their youth were participants in different forms of athletics. They were more often born and raised on farms, but also in large cities or small towns where they ate fresh-cooked and raw foods that were freshly obtained from the farm or the garden. They generally started out in life breast-fed and not bottle-fed. The milk consumed in childhood was, without exception, raw and not pasteurized. These people were generally in excellent health. When asked if any of their family or friends with similar diets ever had a heart attack in their early forties or fifties, or died young from any other causes, they would think back and say that their parents, grandparents or others in their family lived to old age-into their eighties and nineties-in good health. They also had many or all of their teeth.


STRONG TEETH AND BONES ARE A RARITY IN TODAY'S SOCIETY

People with strongly built teeth and bone are being lost from our modern civilization in the United States of America. Their children have softer dentitions, and their grandchildren and great grandchildren today are worse off than ever, in spite of the false belief that they eat better than their forebears.

These observations and questions are more than a controlled laboratory experiment or controlled clinical data of a limited number of patients. It is a generation of over thirty years of dental practice in which observations were made to understand clinically the relationship with premature aging. The number of new patients with rock-hard teeth and bone was not recorded, as a report of this kind was not anticipated. In the early days, new patients entering my practice with rock-hard teeth and bone would perhaps average a half dozen per year. In recent years, a full year could go by without seeing even one new patient with rock-hard teeth and bone. Nevertheless, if all such cases were recorded to furnish concise data or documentation, I would estimate that there would not have been many more than 100 patients among over 3,000 new patients.

The remaining patients would fall into the category of soft or not-so-hard teeth and bone, in varying degrees. Therefore, in the early days of my practice the average number of new patients with rock-hard teeth and bone would average approximately three percent. Today's new patients having rock-hard teeth and bone would be practically zero percent.


DISEASE AND REFINED FOODS

The patients who had soft teeth and bone did not generally have admirable food records for themselves and their families. They generally ate refined and chemically treated foods, which were treated to preserve them and to prevent spoilage. The fats were hydrogenated to allow them to be kept out of the refrigerator without spoilage; the milk had been pasteurized to avoid tuberculosis and brucellosis. Fruits and vegetables had been frozen, transported and stored for a length of time with loss of nutrients that are known and that are as yet unknown; the foods they consumed such as cake, candy, ice cream and soft drinks usually contained refined sugars. They ate foods poorly frozen with consequent reduction and even destruction of the natural taste and texture of fresh foods, indicating a deleterious change in composition.

All of these seem to be the culprits causing soft teeth and bone, with probable development of oral and general pathology, premature greying of hair, and shorter length of life for the affected individual. We overcook, preserve and refine our food to prevent spoilage to the point where bacteria or animal life cannot thrive on this food. It is impossible for the human being to thrive and be healthy on the empty calories of this sterile-like food which may be causing the degeneration of the physical health being experienced in recent generations.

As our population increases, it is more difficult to distribute foods that are fresh daily from the farm and garden to so many millions of people.

Nevertheless, it is imperative that ways and means be developed to bring them to the population as fast as possible, such as by air freight or from local farming areas. The foods should then be bought and eaten while still fresh. We should eat the widest varieties of nutritious foods. A picky eater is one who generally suffers the most from malnutrition. We should avoid the refined foods that have had roughage and vitamins removed, and then are enriched with known vitamins and minerals to add to the nutritive value. There are vitamins and nutrients that are not known today, but will be known in the future. It does not make sense to remove the natural known and unknown nutrients through refinement and then add only the known ones which are synthetically made.


ENZYMES IN FOODS DESTROYED IN MODERN DIETS

Wulzen and Bahrs, McCarrison, Pottenger and many others have shown the importance of living on fresh uncooked foods, which are natural for all animals, from humans to the lower forms of life. Undoubtedly, there are nutritional elements needed by the body that are inhibited or destroyed by cooking, refining and freezing. It seems that enzymes may be the substance destroyed, creating one of the missing links in the preparation of foods for digestion and assimilation for the building of strong and healthy animals.

Weiser states that the properties of enzymes may be summarized as proteinaceous biocatalysts produced by living cells to perform a specific biochemical reaction necessary for cell metabolism. He says that they act as catalysts and are called "catalysts of life," because there can be no life without enzymes. Life is just one enzyme reaction after another, and each enzyme has a particular job to do and it cannot be made to do another. An attempt to preserve food does nothing more than create an unfavourable environment for enzyme activity. Low temperatures and cooking destroy them.

Jansen and Balls explain how enzymes constantly change the products in which they exist. The changes during the growth and ripening, and even after the harvesting, of a plant may be good or bad, depending on circumstances. They explain how food processors eliminate enzyme actions by scalding or heating before freezing, and how enzyme actions are delayed by the freezing process. Chemicals are also used in some of these freezing processes to control enzyme action.


ENZYMES IN FRESH MILK

The enzymes found in fresh raw milk are a catalase, a peroxidase, and a phosphatase. The phosphatase seems to ensure the utilization of calcium that apparently helps the formation of rock-hard teeth and bone found in the strongly built individuals in past generations, and as shown in Pottenger's experiments. Pasteurization destroys these enzymes and their presence is a determination of the effectiveness of the pasteurization process.

Therefore, a way must be found safely and legally to market fresh raw milk to the consuming public throughout our country. This would be a big factor in avoiding the loss of these enzymes, which help build strong bodies and help to prevent premature aging.

The effect of freezing and storage of foods on the enzymes to affect the taste, texture and general quality have been discussed by Matz, Gilbert, Partmann, West, Titus, and Van Duyne and others. Frozen foods have become a major source of food supply in recent years in this age of rapid premature aging. Much research is needed in this field to find the effect of freezing on enzymes, the place enzymes have in the breaking down of foods in the preparation for assimilation and the final effect on building rock-hard teeth and bone such as is found in long-lived and healthy individuals.