Saturday, December 30, 2006

Blowing your mind but not your arteries . . .

What if it's all been a big fat lie? was the provocative question Gary Taubes asked in his award winning article that questioned the basis of established guidelines for dietary fat consumption. He may now be in hiding alongside Salman Rushdie with a similar fatwa issued instead by the USDA. Between his work and that of the Weston A. Price Foundation, I urge you to challenge what you think you know about dietary fat.

After an introduction in which Taubes entertains the idea that the often maligned Dr. Atkins may actually be correct in his theories, Taubes continues by saying, "Now a small but growing minority of establishment researchers have come to take seriously what the low-carb-diet doctors have been saying all along. Walter Willett, chairman of the department of nutrition at the Harvard School of Public Health, may be the most visible proponent of testing this heretic hypothesis [lower carbohydrate consumption]. Willett is the de facto spokesman of the longest-running, most comprehensive diet and health studies ever performed, which have already cost upward of $100 million and include data on nearly 300,000 individuals. Those data, says Willett, clearly contradict the low-fat-is-good-health message ''and the idea that all fat is bad for you; the exclusive focus on adverse effects of fat may have contributed to the obesity epidemic.''
"These researchers point out that there are plenty of reasons to suggest that the low-fat-is-good-health hypothesis has now effectively failed the test of time. In particular, that we are in the midst of an obesity epidemic that started around the early 1980's, and that this was coincident with the rise of the low-fat dogma. (Type 2 diabetes, the most common form of the disease, also rose significantly through this period.) They say that low-fat weight-loss diets have proved in clinical trials and real life to be dismal failures, and that on top of it all, the percentage of fat in the American diet has been decreasing for two decades. Our cholesterol levels have been declining, and we have been smoking less, and yet the incidence of heart disease has not declined as would be expected. ''That is very disconcerting,'' Willett says. ''It suggests that something else bad is happening.''

"Scientists are still arguing about fat, despite a century of research, because the regulation of appetite and weight in the human body happens to be almost inconceivably complex, and the experimental tools we have to study it are still remarkably inadequate. This combination leaves researchers in an awkward position. To study the entire physiological system involves feeding real food to real human subjects for months or years on end, which is prohibitively expensive, ethically questionable (if you're trying to measure the effects of foods that might cause heart disease) and virtually impossible to do in any kind of rigorously controlled scientific manner. But if researchers seek to study something less costly and more controllable, they end up studying experimental situations so oversimplified that their results may have nothing to do with reality. This then leads to a research literature so vast that it's possible to find at least some published research to support virtually any theory. The result is a balkanized community -- ''splintered, very opinionated and in many instances, intransigent,'' says Kurt Isselbacher, a former chairman of the Food and Nutrition Board of the National Academy of Science -- in which researchers seem easily convinced that their preconceived notions are correct and thoroughly uninterested in testing any other hypotheses but their own."

"What's more, the number of misconceptions propagated about the most basic research can be staggering. Researchers will be suitably scientific describing the limitations of their own experiments, and then will cite something as gospel truth because they read it in a magazine. The classic example is the statement heard repeatedly that 95 percent of all dieters never lose weight, and 95 percent of those who do will not keep it off. This will be correctly attributed to the University of Pennsylvania psychiatrist Albert Stunkard, but it will go unmentioned that this statement is based on 100 patients who passed through Stunkard's obesity clinic during the Eisenhower administration.""

Mary Enig, PhD, and Sally Fallon outline their argument for the benefits of saturated fats in 'the Skinny on Fats' which explains the necessary functions of various fats and cholesterol and their importance. Some of that article appears below though I would urge you to read the entire text:

The Benefits of Saturated Fats

The much-maligned saturated fats—which Americans are trying to avoid—are not the cause of our modern diseases. In fact, they play many important roles in the body chemistry:

  • Saturated fatty acids constitute at least 50% of the cell membranes. They are what gives our cells necessary stiffness and integrity.
  • They play a vital role in the health of our bones. For calcium to be effectively incorporated into the skeletal structure, at least 50% of the dietary fats should be saturated.38
  • They lower Lp(a), a substance in the blood that indicates proneness to heart disease.39
  • They protect the liver from alcohol and other toxins, such as Tylenol.40
  • They enhance the immune system.41
  • They are needed for the proper utilization of essential fatty acids. Elongated omega-3 fatty acids are better retained in the tissues when the diet is rich in saturated fats. 42
  • Saturated 18-carbon stearic acid and 16-carbon palmitic acid are the preferred foods for the heart, which is why the fat around the heart muscle is highly saturated.43 The heart draws on this reserve of fat in times of stress.
  • Short- and medium-chain saturated fatty acids have important antimicrobial properties. They protect us against harmful microorganisms in the digestive tract.
  • The scientific evidence, honestly evaluated, does not support the assertion that "artery-clogging" saturated fats cause heart disease.44 Actually, evaluation of the fat in artery clogs reveals that only about 26% is saturated. The rest is unsaturated, of which more than half is polyunsaturated.45
What about Cholesterol?

And what about cholesterol? Here, too, the public has been misinformed. Our blood vessels can become damaged in a number of ways—through irritations caused by free radicals or viruses, or because they are structurally weak—and when this happens, the body's natural healing substance steps in to repair the damage. That substance is cholesterol. Cholesterol is a high-molecular-weight alcohol that is manufactured in the liver and in most human cells. Like saturated fats, the cholesterol we make and consume plays many vital roles:

  • Along with saturated fats, cholesterol in the cell membrane gives our cells necessary stiffness and stability. When the diet contains an excess of polyunsaturated fatty acids, these replace saturated fatty acids in the cell membrane, so that the cell walls actually become flabby. When this happens, cholesterol from the blood is "driven" into the tissues to give them structural integrity. This is why serum cholesterol levels may go down temporarily when we replace saturated fats with polyunsaturated oils in the diet.46
  • Cholesterol acts as a precursor to vital corticosteroids, hormones that help us deal with stress and protect the body against heart disease and cancer; and to the sex hormones like androgen, testosterone, estrogen and progesterone.
  • Cholesterol is a precursor to vitamin D, a very important fat-soluble vitamin needed for healthy bones and nervous system, proper growth, mineral metabolism, muscle tone, insulin production, reproduction and immune system function.
  • The bile salts are made from cholesterol. Bile is vital for digestion and assimilation of fats in the diet.
  • Recent research shows that cholesterol acts as an antioxidant.47 This is the likely explanation for the fact that cholesterol levels go up with age. As an antioxidant, cholesterol protects us against free radical damage that leads to heart disease and cancer.
  • Cholesterol is needed for proper function of serotonin receptors in the brain.48 Serotonin is the body's natural "feel-good" chemical. Low cholesterol levels have been linked to aggressive and violent behavior, depression and suicidal tendencies.
  • Mother's milk is especially rich in cholesterol and contains a special enzyme that helps the baby utilize this nutrient. Babies and children need cholesterol-rich foods throughout their growing years to ensure proper development of the brain and nervous system.
  • Dietary cholesterol plays an important role in maintaining the health of the intestinal wall.49 This is why low-cholesterol vegetarian diets can lead to leaky gut syndrome and other intestinal disorders.
  • Cholesterol is not the cause of heart disease but rather a potent antioxidant weapon against free radicals in the blood, and a repair substance that helps heal arterial damage (although the arterial plaques themselves contain very little cholesterol.) However, like fats, cholesterol may be damaged by exposure to heat and oxygen. This damaged or oxidized cholesterol seems to promote both injury to the arterial cells as well as a pathological buildup of plaque in the arteries.50 Damaged cholesterol is found in powdered eggs, in powdered milk (added to reduced-fat milks to give them body) and in meats and fats that have been heated to high temperatures in frying and other high-temperature processes.
  • High serum cholesterol levels often indicate that the body needs cholesterol to protect itself from high levels of altered, free-radical-containing fats. Just as a large police force is needed in a locality where crime occurs frequently, so cholesterol is needed in a poorly nourished body to protect the individual from a tendency to heart disease and cancer. Blaming coronary heart disease on cholesterol is like blaming the police for murder and theft in a high crime area.
  • Poor thyroid function (hypothyroidism) will often result in high cholesterol levels. When thyroid function is poor, usually due to a diet high in sugar and low in usable iodine, fat-soluble vitamins and other nutrients, the body floods the blood with cholesterol as an adaptive and protective mechanism, providing a superabundance of materials needed to heal tissues and produce protective steroids. Hypothyroid individuals are particularly susceptible to infections, heart disease and cancer.51

Classification of Fatty Acids by Saturation

Fatty acids are classified in the following way:

  • Saturated: A fatty acid is saturated when all available carbon bonds are occupied by a hydrogen atom. They are highly stable, because all the carbon-atom linkages are filled—or saturated—with hydrogen. This means that they do not normally go rancid, even when heated for cooking purposes. They are straight in form and hence pack together easily, so that they form a solid or semisolid fat at room temperature. Your body makes saturated fatty acids from carbohydrates and they are found in animal fats and tropical oils.
  • Monounsaturated: Monounsaturated fatty acids have one double bond in the form of two carbon atoms double-bonded to each other and, therefore, lack two hydrogen atoms. Your body makes monounsaturated fatty acids from saturated fatty acids and uses them in a number of ways. Monounsaturated fats have a kink or bend at the position of the double bond so that they do not pack together as easily as saturated fats and, therefore, tend to be liquid at room temperature. Like saturated fats, they are relatively stable. They do not go rancid easily and hence can be used in cooking. The monounsaturated fatty acid most commonly found in our food is oleic acid, the main component of olive oil as well as the oils from almonds, pecans, cashews, peanuts and avocados.
  • Polyunsaturated: Polyunsaturated fatty acids have two or more pairs of double bonds and, therefore, lack four or more hydrogen atoms. The two polyunsaturated fatty acids found most frequently in our foods are double unsaturated linoleic acid, with two double bonds—also called omega-6; and triple unsaturated linolenic acid, with three double bonds—also called omega-3. (The omega number indicates the position of the first double bond.) Your body cannot make these fatty acids and hence they are called "essential." We must obtain our essential fatty acids or EFA's from the foods we eat. The polyunsaturated fatty acids have kinks or turns at the position of the double bond and hence do not pack together easily. They are liquid, even when refrigerated. The unpaired electrons at the double bonds makes these oils highly reactive. They go rancid easily, particularly omega-3 linolenic acid, and must be treated with care. Polyunsaturated oils should never be heated or used in cooking. In nature, the polyunsaturated fatty acids are usually found in the cis form, which means that both hydrogen atoms at the double bond are on the same side.

All fats and oils, whether of vegetable or animal origin, are some combination of saturated fatty acids, monounsaturated fatty acids and polyunsaturated linoleic acid and linolenic acid. In general, animal fats such as butter, lard and tallow contain about 40-60% saturated fat and are solid at room temperature. Vegetable oils from northern climates contain a preponderance of polyunsaturated fatty acids and are liquid at room temperature. But vegetable oils from the tropics are highly saturated. Coconut oil, for example, is 92% saturated. These fats are liquid in the tropics but hard as butter in northern climes. Vegetable oils are more saturated in hot climates because the increased saturation helps maintain stiffness in plant leaves. Olive oil with its preponderance of oleic acid is the product of a temperate climate. It is liquid at warm temperatures but hardens when refrigerated.


Classification of Fatty Acids by Length

Researchers classify fatty acids not only according to their degree of saturation but also by their length.

  • Short-chain fatty acids have four to six carbon atoms. These fats are always saturated. Four-carbon butyric acid is found mostly in butterfat from cows, and six-carbon capric acid is found mostly in butterfat from goats. These fatty acids have antimicrobial properties—that is, they protect us from viruses, yeasts and pathogenic bacteria in the gut. They do not need to be acted on by the bile salts but are directly absorbed for quick energy. For this reason, they are less likely to cause weight gain than olive oil or commercial vegetable oils.27 Short-chain fatty acids also contribute to the health of the immune system.28
  • Medium-chain fatty acids have eight to twelve carbon atoms and are found mostly in butterfat and the tropical oils. Like the short-chain fatty acids, these fats have antimicrobial properties; are absorbed directly for quick energy; and contribute to the health of the immune system.
  • Long-chain fatty acids have from 14 to 18 carbon atoms and can be either saturated, monounsaturated or polyunsaturated. Stearic acid is an 18-carbon saturated fatty acid found chiefly in beef and mutton tallows. Oleic acid is an 18-carbon monounsaturated fat which is the chief component of olive oil. Another monounsaturated fatty acid is the 16-carbon palmitoleic acid which has strong antimicrobial properties. It is found almost exclusively in animal fats. The two essential fatty acids are also long chain, each 18 carbons in length. Another important long-chain fatty acid is gamma-linolenic acid (GLA) which has 18 carbons and three double bonds. It is found in evening primrose, borage and black currant oils. Your body makes GLA out of omega-6 linoleic acid and uses it in the production of substances called prostaglandins, localized tissue hormones that regulate many processes at the cellular level.
  • Very-long-chain fatty acids have 20 to 24 carbon atoms. They tend to be highly unsaturated, with four, five or six double bonds. Some people can make these fatty acids from EFA's, but others, particularly those whose ancestors ate a lot of fish, lack enzymes to produce them. These "obligate carnivores" must obtain them from animal foods such as organ meats, egg yolks, butter and fish oils. The most important very-long-chain fatty acids are dihomo-gamma-linolenic acid (DGLA) with 20 carbons and three double bonds; arachidonic acid (AA) with 20 carbons and four double bonds; eicosapentaenoic acid (EPA) with 20 carbons and five double bonds; and docosahexaenoic acid (DHA) with 22 carbons and six double bonds. All of these except DHA are used in the production of prostaglandins, localized tissue hormones that direct many processes in the cells. In addition, AA and DHA play important roles in the function of the nervous system.29